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High-Frequency Sum-Rule Expansion for 
Relativistic Quasi-One-Dimensional Quantum 
Plasma Dielectric Tensor 
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A high-frequency sum rule for all elements of the relativistic spinless quasi-one- 
dimensional quantum plasma response tensor at T =  0 K is derived. It is found 
that the frequency of oscillations is reduced by the relativistic effect. 

1. I N T R O D U C T I O N  

High-frequency sum-rule expansions of the full response tensor of 
nonrelativistic and relativistic quantum plasmas in the absence of magnetic 
field are known (Genga, 1988a, 1992a, b). However, in the presence of an 
external magnetic field the only known results are those applicable to 
nonrelativistic situations (Genga, 1988b, 1989). 

In this work I consider the high-frequency behavior of the full dielec- 
tric tensor in an anisotropic system of a relativistic quantum plasma with 
spinless particles of density 10 29 particles per unit volume at T = 0 K in the 
presence of an external magnetic field up to order co-5. The work is related 
to the Malmberg-O'Neil experiment where a strongly coupled electron 
plasma is generated. 

In laboratory plasmas, unlike in the astrophysical case, the radiation 
effect is not appreciable, and hence is negligible. I apply the Hamiltonian 
formalism to derive the high-frequency sum rules as in the nonrelativistic 
case. Further, as in the magnetic-free case (Jancovici, 1962; Genga, 1992b) 
an electron may jump from one state inside the Fermi sphere to an un- 
occupied state due to interaction, thus leading to the creation of a "Fermi 
hole" behind. The jump of an electron from a negative-energy state to an 
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occupied positive-energy state teads to the creation of a positron-electron 
pair; the positron is a hole that is called a "Dirac hole." In this case the 
interaction is a purely Coulomb one (Goldstone, 1957). The system is 
therefore described by a set of unperturbed states which allow for positrons 
and electrons. 

The method of derivation is reviewed below. In Section 2 the general 
relationships between the external or current-current response function 
sum-rule coefficients and those of the dielectric tensor are reviewed and the 
exact co-z, co 3, 0)-4, and co-5 sum-rule coefficients for the transverse 
element are obtained. The long-wavelength limit of the results and their 
possible implications for the dispersion relation of plasma modes are 
considered in Sections 3 and 4, respectively. 

The total electron current at point X1 is given by 

e 
j(xi) = ~ Y~ [ v i 6 ( x  - x,) + ,~(x - xi) v i )  (1) 

where V i is the group velocity of the particle i. The total energy of a free 
spinless particle is given by (Johnson and Lippman, 1949; Genga, 1992a,b; 
Berestetskii etal., 1978; Baym, 1974; Sakura, 1987; Bjorken and Drell, 
1964) 

E = ( [ I 2 c  2 n t- m2c4) 1/2 (2) 

where 

e 
H = P - - A~ - e A(r) 

c r 
(the generalized momentum) 

1 BO A ~  •  (the external vector potential) 

(3) 

and A(r) is the self-consistent vector potential. 
From equation (2) we find that 

~E(P) 
Vi-- 

~ P  

l i e  2 

= (ii2c 2 + m%4) m 

rI/m 
- (1 + II2/mZc:) 1/: (4) 
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In Fourier transform language, this equation becomes 

<J~(~o) > = e<j~(~o) > -- - -  
e2N --1 #v v 7 Tk Ak(~o) 
m c  

(5) 

where 7-1 is the relativistic term defined as 

1 ] ~ - - 1  
(1 + 1-I2/m2c2) 1/2 

(6) 

with 

u = I I / m  (7) 

as the nonrelativistic phase velocity of the particle. Equation (7) is arrived 
at after taking first the Fourier transform of equation (1) followed by its 
expectation value since we are interested in the response function of the 
electron system. By applying perturbation theory (Pines and Nozi6res, 
1966; Genga, 1988a,b, 1989), it is found that 

<j~(co)> = - e ~ c o  ' <Ol n~(~)In><nl I ~ k ( 0 ) I 0 >  
C 

np • 1 

c~ - ~Ono(p, p + hk/2) + iI/ 

_ 1 ] A ~,(~o) 
co - COno(p, p - hk/2) + iq 

(8) 

where 

- - i k ' x i  Ix II~ = �89 ~ (V~e-k 'x '+  e Vl) (9) 
i 

with 

V f  = 7 l l - I ~ / m  (10)  

From equations (5) and (8) it is found that conductivity tensor a "v 
becomes 

e2 E a~V(ke)) = i - zUV(kco) - T~ v (11) 
O) m 
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where )CV(ke)) is the electron response tensor defined as 

Z'~(kco) = ~  <0111[(r)In><n[ H~k(0)10> 
np 

o3 - -  CO.o(p  , p + hk/2) + it/ co - C~o(p , p - hk/2) + it/ 

(12) 

In terms of the polarizability tensor, equation (11) becomes 

4 r o e  2 
~ ( k m )  = i ~"~(k~o) 

(D 

_G __ ~ 1T,UV 
~o2 ~ --k +~V(k~~ (13) 

where 

~v 

~.V(ke))=4~e2 Z(k~) (14) ~ 2  

The matrix elements 
equation (14) are those 
Coulomb interactions. 

and excitation frequencies that appear in 
appropriate for a system of electrons with 

2. TRANSVERSE SUM RULES 

As in the nonrelativistic case, the complete modified polarizability 
tensor cT"V(kco) is expressible in terms of corresponding "external" qualities 
~U~(k~a), 

where 

~(kco) = ~ ( k ~ ) ( A -  ~(kco)) t A (is) 

A = ~ - n2T 

kr 
n = - -  (16) 

fD 

k . k  
T = ~ - - -  k 2 
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with 

= 1 (unit vector) (17) 

0 

~(kco)  is known to possess a high-frequency sum-rule expansion of the 
form 

~H,.~(k0_)) = _ ~ n~+~(k) (18) 
;=1 /+1  

l = o d d  

~Hl l " (k ( ' 0 ) - - - - - -  2 ~7+~(k) 
Eol+ 1 (19) 

l=2  
l= even 

as in the nonrelativistic case; the superscript H denotes "Hermitian part 
of"; prime and double prime denote "real part of" and "imaginary part of," 
respectively. As in the nonrelativistic case the ~)~V(k) coefficients are 
obtained from the relation 

A 

- -  / z v  ~;+ l (k)= (4ue2/h '-~) ~ { [OJ,o(P, P - hk/2)] ;-2 
np 

x <01FI~(z)[n><nl HLk(0) [0>-  [ - ~ , o ( p , p + h k / 2 ) ] '  2 

x (0l FVk(0 ) [n>(n[ I-I~(z)[0)}~=0 (20) 

The high-frequency expansion of ~V(k~) is similar to that of ~'V(k~) as 
- -  / z y  

given by equations (21) and (22) with ~;+ ~(k) replacing the corresponding 
- -  / t V  ~;+~(k). The relationship between the two sets of coefficients up to l=  4 is 
the same as for the nonrelativistic case. 

The Hamiltonian of the system that satisfies equation (20) is given by 

H = z m v ~ + ~  ~ U(Ix; -x j l )  
i 2 i + j  

ij 

~ 1 
=Y,~-2~m+ ~ Y~ U(Ixi-x;) (21) 

i ij 
i §  

where U( Ix ; -  xjl ) is the velocity-independent interaction potential between 
a pair of particles. 

We now turn to the calculation of the frequency moments (up to 
l=4).  It is known that in an anisotropic system, in the presence of an 

902:32'7-12 
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external magnetic field, the dielectric tensor has six independent elements 
and, therefore c~ ~v is nondiagonal. In this case both even and odd moments 
of - ~v f~z+~(k) exist. The real diagonal and off-diagonal elements satisfy the 
symmetries condition 

- - /Iv  -- v# a t+  l(k) = nz+ ~(k) (22) 

and the imaginary off-diagonal elements satisfy the antisymmetric condition 

fl,+ ~(k) = -~;~+ ~(k) (23) 

as in the nonrelativistic case. 
The first moment yields 

2 r ( O l  ) ( n l  ) f i~(k)  = &re ~ / H~,(r) In r ILdO) to 
np ~ c~ P + hk/2) 

(01 l-ILk(0)In)(nl  H~,(r)10)]  + 
C%o(p, p - h k / 2 )  / J~=o 

-- ~' -- lr"2l[ /~v (24) 
- -  Z ~ p ~ k  

where 
k~,k ~ 

Lf, = k 2  (25) 

The second moment leads to 

~fV(k ) 4rw2 
= - - Z -  ~ [-(01H~,(r)In)(n[ HCk(0)10)  

f l ,  
np 

- (0l I ILk(0) In ) (n l  rig(r)10)]~=o 

2~e 2 
. . . .  E(ol Enf,(r), nLdo) ]  I O ) - I [ n t d o ) ,  n~(r)] IO)3~=o 

h 

-BO~ 

The third moment is given by 

4 2 [ ( - ~ )  " ~v _ ,~rce- 
a 4 ( k ) -  h2 E (/)no P, P -  (0] FI~,(r)]n)(nl 1-ILk(0)10) 

n p  

~ 

(26) 
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2~e 2 
- -  / / 2  

co~eB~ ~ ~ ~ 8__~ + e~v 
= 7 - - 4  2mc k (01 e"' ~ x  ~ + e*"1~' 9x * --Sx*' 

- 2eBO 
+ i s ' ~ e B ~ ( x V - x  " ) l O } - ' y - 4 ~ e  ~ k % ~ ,  ~ 

2rnc 2mc  

io> x (OI3x ~ t 2 m c  

2 B o 0 . e B  ~ 
- -  ~ -4cgpe " k V ~ ' " ~ ( 0 1 - - -  - ~ Z "  10> 

4mc  9x  ~ z 2mc  

2 0 9 2 9 
_ 7 - 4  c~ k ~ k , (O[  2 m c ( e B  o) -1 _ _  + ie~,aZ~ _ _  

2mc  8X ~ 8Z ~ 8Z ~ 

o eB  

~Z ~ 2mc  

4 z eB,~ k~k~(O I 2mc(eBO) 1 ~2 
- 7 COp 2mc  8Z ~' 3Z - - - - - ~  + iz~"7aZ~ --gZ*' 

-- ie~'"Z ~ -  ~"~' (xU) a I0> 
OZ ~ -- 2mc  

1 92 

-- ~-4(9P ~zmc k~k~(OI 2 m c ( e B ~  aZ ~ 9 f f  iE:"I~Z:'--OZ*' 

a Io> - ie~"~Z~ ~ + [ett~/~t(Z~)2 (~laV - -  e'utlv)~PZv] 2mc 
oX 

+ 7 2~o4<01L~v+lZLq~(Sk q - S k )  Io> 
q 

The fourth moment leads to 

4~e 2 
= h3 <01 [[[FI~(z), n ] ,  H] ,  FU_k(O)] 

- [ [ [FU k(0), n ] ,  HI,  II~k(0)]  10> J~=o 

- - -  <Ol UEn~(t), H],  [ILk(O)] + [[FI ~ k(O), H],  Fl~(t)] IO} I~=o 

(27) 
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2 0 
= __~--6 coeeB,1 U'(OI e~'7~N'~)~' (eBb)2 

4mc 4 m %  2 

eB ~ 8 eB~ 8 7 E ~'~v ___a ~ _ _  + ev~ (xV)2 _ _  
+ 4 mc Z Oxv 8m2c  2 ~)C, u 

+ ~""~ (eBb) 2 ~ ie~v'7 (eBb) 3 
8mhc ()~#)2 -t- 16m2hc 2 (gu) 3 

�9 2 o 7 82 
+ i 6 e " ~  u v e B ~ 8 ~  1 0 ) - 7 - 6 c o ( e B " k ~ k U ( 0 l i  ~"~ 

mc OZ ~ ,+mc 4 OZ ~ OZ ~ 

17 eB~ z v 0 7 v ~, eB~ ~ 2 
+ 8 e mc ~ + i ~  m2c2 

_ _  7-  6 CO~ eB~ k~k~(O[ i 7 ? 2 eB ~ 0 
,~mc 4 e~'~"z OZ ~' OZ ' - - - ~  + 8 e~'~ Z~' - -  mc OZ ~' 

.co eB 7 u~ eB~ 2 2 o 02 
+ i - e  - : - - ~ ( x ~  1 0 ) - 7  -~  ~ qk~k~(OJ i6~'~ ~ -  

a m2c 2 ~ 4mc O)ff OZ ~ 

B o 0 2 3 0 2 3 e..~fi .  ~ e 
+ i6e ~ '  + i -~ e "'~ - -  + 

OZ ~OZ u OZ ~0)~ ~ 2 mc 

+ 3e~,7~ eB~ Z ~ 0 eB~ )ff 0 15 eB ~ 
_ _  e . .~  ~ (Z~) 2 me ~ + 3ev'7~' mc ~ - -  i 4 m2c 2 

4 4 en~  ~,v + ie"~(Z~--Z") e B ~ l O ) + i  7 -  co - ~ ( 0 I L k  
me P 2mc 

1 
~- N E  (~'urlC~Lq v~-~D'La'u][gq ,~, k - q  - - S k )  10)  (28 )  

q 

In order  to obtain an explicit expression for - ~ ~ql+l(k), I choose the k system 
in which (Genga, 1988b) 

and 

k = (0,  0, k )  

0 __ O 0 B x - sin 0 

By = 0 

Bz = B ~ cos 0 

(29) 

q;r = q sin 0 cos 0 

qy = q sin 0 sin 0 (30) 

qz = q cos 0 
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The components of the external magnetic field given by equation (29) are 
obtained when the Landau gauge A ~ = �89 B ~  -- Z B  ~ 0) is applied. 

3. LONG-WAVELENGTH LIMIT 

In the long-wavelength limit, equations (27)-(31) lead to the following 
elements of the frequency moments: 

fi l=fi 2=0 
1 2 

" 12 ~3 (k) = - ~ ( k )  = i'y-2f.Op2s COS 0 

~3(k)  = -~32(k)= i?-:COp2 f~ sin 0 

2 
2 m e E . . . .  k2 

fi '(k) = - 17 m 

fi~3(k) 

fi  (k) 

fi]3(k) 

6~2(k) 

6~3(k) 

=0  

2 2 
= - - ] ' 5  3:-2 (D~ E m  . . . .  k2 

_ 2 0 9 4  ` _4 . ~  (3~F 012 4 ) k  2 
= ? P Y m -- 15 y2E . . . .  

=-fi~l(k)=-iT-6m--~-8m 3 )2+T~ 7 E .. . .  ) k 2 c o s O  

o__~(15P(~ ? 24 2 \ 
=- - f i~ l (k)=-- iT-6  8m - - ~ 7  E . . . .  ) k z s i n O  

where tO) is 

with 

of the form (Genga, 1988b) 

I0 )  = (27c) -1/2 ~ l e ( y - - y o ) e / 4 ) ~  2 + iP2/h 

h 
mr) 

2Cpx 
Y O  ~ -  - -  - -  

e 

y = B z x  -- Bxz  = ~ Y  
e 

eB o 

m c  

(31) 

(32) 

(33) 
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4. RELATIVISTIC EFFECT 

The relativistic effect on the undamped high-frequency, quasi-one- 
dimensional quantum plasma waves at T = 0 K is determined in this section 
by using the high-frequency sum rules (HFSRs). The high-frequency modes 
of interest are the "ordinary" and "extraordinary" modes propagating 
both along and across the external magnetic field; the extraordinary 
mode under consideration is the one with cutoff frequency e)2= 
�89 + (1 + 4(D2/~2)1/2 3. 

4.1. Propagation Parallel to Magnetic Field 

It is known (Genga, 1988b, 1989) that here only the longitudinal and 
the extraordinary modes exist. 

4.1.1. Longitudinal Mode 

The behavior of longitudinal plasmons is known to be determined by 
the dispersion relation 

/~33(kco)  = 1 + ~ 3 3 ( k c 0 )  = 0 (34) 

When a small perturbation is applied to the dispersion relation the ensuing 
plasmon frequency is obtained to be of the form 

~ 12 E 2( 4 )] =~ e)p 1 - Y - 5 / 2 ~  m 6Ev--~72E . . . .  k2 (35) 

where Ev is the lowest Landau level nonrelativistic particle kinetic energy 
defined as 

p~)2 

Ev= 2m (36) 

The correlation term is seen to be of the order 7 2 greater than the quantum 
term. 

4.1.2. Extraordinary Mode 

The dispersion relation that determines the behavior of the extra- 
ordinary mode is known to be of the form 

[ell(k~o) - n2-] 2 - e 122(k~o) = 0 (37) 
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Equation (37) leads to the ensuing frequency of the form 

1 2 2 1/2 2 _ ~ 2 + 2 ~ E  .... k2 (38) 

It can still be seen that the correlations enhance the positive refractive 
dispersions for finite k; however, the correlation term is now smaller than 
the refractive term by a relativistic factor of 7 -2. Further, it can be seen 
that the ensuing frequency of oscillations is reduced by the relativistic 
factor as given by equation (35) and (38), respectively. 

4.2. Propagation Perpendicular to Magnetic Field 

In this case it is known that only a pure transverse mode, called the 
"ordinary mode," and a coupled transverse-longitudinal mode, known as 
the "extraordinary mode," exist. The dispersion relation for the ordinary 
mode is given as 

e l l (km) -  n2 = 0 (39) 

whereas that for the extraordinary mode is given by 

[e22(k~o) - n 2 ] e33(kco) - E~3(kco) = 0 (40) 

4.2.1. Ordinary Mode 
When a small perturbation is applied to the dispersion relation it is 

found that there is no shift in frequency due to correlations. 

4.2.2. Extraordinary Mode 
In this case the ensuing frequency of oscillation after a small perturba- 

tion is applied to the dispersion relation is given by 

co2=7-1co22 1+71/2 ~ me~ 3Ev-~ 72E .... k2 (41) 

The correlation term is seen to enhance the negative quantum dispersion 
for finite k as in the nonrelativistic case. However, the correlation is now 
larger than the quantum term by a relativistic factor of 72. Further, the 
ensuing frequency of oscillation is reduced by the relativistic factor as 
shown in equation (41). 
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